
CURRICULUM INTENT: Computer Science

Computer Science GCSE

In GCSE Computer Science, pupils explore how computer systems function, from the physical hardware to the software applications and programs that users
interact with. They learn how to design, build, and adapt computer systems, applying these skills creatively to solve real-world problems. The course
encourages pupils to make computers work for them, moving beyond basic functions to develop their own solutions. A strong emphasis is placed on
understanding the risks associated with storing personal information electronically, alongside strategies for maintaining security and reducing the impact of
online threats. The subject equips pupils with transferable skills, including logical thinking, problem-solving, and data handling, which are valuable across
other subjects and future career paths. ICT skills are essential in modern workplaces, and the ability to write programs and manipulate data are highly
regarded by employers.

Computer Science A Level

At A Level, Computer Science builds on this foundation by deepening students’ understanding of how computers operate and developing advanced
computational and problem-solving skills. Students gain practical experience through their NEA, where they design and implement bespoke software
solutions. This includes working with Object-Oriented Programming, Event-Driven Programming, and Graphical User Interfaces. Such projects prepare
students for further study at degree level or for direct entry into apprenticeships and careers in software development. The course also explores the
fundamental building blocks of computing, giving students a broad and thorough understanding of the subject and opening the door to a wide range of future
opportunities.

CURRICULUM MAP: Computer Science

Computer Science GCSE

Year Knowledge (Topics /Contexts)
What pupils will ‘know’.

Skills acquired
What pupils will be able to ‘do’.

Concepts developed
What pupils will ‘understand’.

Assessment (KPIs)

Throughout
year 10
and 11

Programming and programming
concepts

 Formative Assessment

- Regular low-stakes
quizzes on core concepts
and terminology

- Use of mini whiteboards
for spontaneous
questioning and peer
feedback

- Annotated responses to
short-answer questions
with teacher guidance

- Self-assessed tasks using
scaffolding tools:
vocabulary banks,
exemplar answers, and
AO-marked frameworks

Summative Assessment
- End-of-topic tests using

past paper-style
questions (multiple-
choice, application, and
extended responses)

- Structured homework

 - Basic programming constructs:
sequence, selection, iteration.

- Data types: integer, real,
Boolean, character, string.

- How to use variables and
constants.

- Concepts of functions,
procedures, and scope.

- String manipulation techniques.
- Input/output
- Structured programming

principle
- differences between low and

high levels of programming
language:

- that all programming code must
be translated into machine code
before it is executed

- the differences between and
use of three types of translator:
interpreter, compiler and
assembler

Writing programs using Python that:
- The importance of code readability,

maintainability, and testing.
- How scope affects variables.
- The advantages of structured

programming and modular design.
- Use NOT, AND and OR when

creating Boolean expressions
- Use in-built functions
- Use random number generation
- Write algorithms in pseudocode

involving sequence, selection and
iteration

- Use one- and two-dimensional
arrays in the design of solutions to
simple problems

- Define the terms field, record and
file

- write simple procedures and
functions

- use parameters to pass data to
procedures and functions

- Write programs using sequence,
selection, iteration, and
subroutines.

- Manipulate strings
- Test, debug, and refine programs

systematically.
- the importance of validating input
- how to determine the correct

output of an algorithm for a given
set of data

- how to identify and correct errors
in algorithms

Year Knowledge (Topics /Contexts)
What pupils will ‘know’.

Skills acquired
What pupils will be able to ‘do’.

Concepts developed
What pupils will ‘understand’.

Assessment (KPIs)

- List validation checks that can be
used on input data

- write simple data validation
routines

- write a simple authentication
routine involving a username and
password

- Write a test plan to test an
algorithm

- Use a trace table to trace through a
program

- Formal assessment
folders with marked and
levelled work linked to
feedback loops

Year 10 Mock Exams

- Paper 1: Computational
Thinking and
Programming Skills
(shortened paper, mock
under timed exam
conditions

- Paper 2 Computing
Concepts ((shortened
paper, mock under timed
exam conditions)

- Reflection tasks: pupils
complete “What Went
Well / Even Better If”
sheets and action plans
post-marking

- Data used to inform
intervention strategies
and track progress across
cohorts

Year 10

Data Representation
KPI3 Pupils understand the
fundamentals of data
representation.

Term 1 - Number bases: binary, decimal,
hexadecimal.

- Conversions between binary,
decimal, and hexadecimal.

- Binary arithmetic (addition,
subtraction, shifts).

- Character encoding systems:
ASCII, Unicode.

- Image representation (pixels,
resolution, colour depth).

- Sound representation
(sampling, sample rate, bit
depth).

- Units of data: bit, nibble, byte,
kilobyte, etc.

- Why binary is used in computers.
- The impact of resolution and colour

depth on image size and quality.
- The trade-offs between lossless

and lossy compression.

- Convert numbers between bases.
- Perform binary arithmetic

operations.
- Calculate file sizes for images and

sound files.
- Choose appropriate compression

methods for scenarios.

Year Knowledge (Topics /Contexts)
What pupils will ‘know’.

Skills acquired
What pupils will be able to ‘do’.

Concepts developed
What pupils will ‘understand’.

Assessment (KPIs)

- Compression techniques:
lossless and lossy.

Term 2 Fundamentals of algorithms

KPI1 Pupils understand the
fundamentals of algorithms.

 - The terms algorithm,
decomposition, and abstraction.

- Standard search algorithms:
linear search, binary search.

- Standard sorting algorithms:
bubble sort, merge sort,
insertion sort.

- Representing algorithms using
pseudocode and flowcharts.

- Why decomposition and
abstraction are used to solve
problems.

- The efficiency of algorithms and the
concept of computational thinking.

- How different algorithms solve the
same problem in different ways.

- Apply decomposition and
abstraction to solve problems.

- Trace through search and sort
algorithms with given data.

- Write, interpret, and refine
algorithms using pseudocode or
flowcharts.

Term 2 Computer Systems, Systems
architecture

- - The CPU: control unit, ALU,
registers, cache.

- The fetch-decode-execute cycle.
- Factors affecting CPU

performance: clock speed,
cores, cache size.

- Embedded systems and their
uses.

- Primary storage (RAM, ROM),
secondary storage (magnetic,
optical, solid state).

- Tertiary storage uses.

- How hardware and software
interact.

- Why embedded systems are
designed for specific tasks.

- How performance factors impact
overall processing speed.

• Why RAM and ROM are both

required.
• Trade-offs between different types

of secondary storage.

- Describe the function of CPU
components.

- Explain the stages of the fetch-
decode-execute cycle.

- Evaluate the suitability of
embedded systems in given
contexts

• Compare different storage

technologies for a given scenario.
• Select appropriate storage media

based on requirements.

Year Knowledge (Topics /Contexts)
What pupils will ‘know’.

Skills acquired
What pupils will be able to ‘do’.

Concepts developed
What pupils will ‘understand’.

Assessment (KPIs)

- Characteristics: capacity, speed,
portability, durability, reliability,
cost

• How storage characteristics affect
suitability.

Term 3 Computer Networks
KPI5 Pupils are able to describe the
fundamentals of computer networks

- - Types of networks: LAN, WAN.
- Factors affecting network

performance.
- The roles of hardware: routers,

switches, WAPs, NICs,
transmission media.

- Client-server vs peer-to-peer
models.

- The Internet, DNS, hosting, the
cloud.

- Virtual networks and their use.

- How different network types are
structured and used.

- Why factors like bandwidth and
latency affect performance.

- The advantages and disadvantages
of cloud computing.

- Compare and contrast client-server
and peer-to-peer models.

- Explain how DNS works to resolve
domain names.

- Evaluate scenarios for using LANs,
WANs, and virtual networks.

Term 3 Cyber Security

KPI6 Pupils are able to describe the
fundamentals of cyber security.

 - Types of cyber threats:
malware, phishing, brute force,
denial of service, data
interception, SQL injection.

- Forms of social engineering:
blagging, phishing, pharming,
shoulder surfing.

- Methods to identify and
prevent vulnerabilities:
penetration testing, anti-

- How social engineering exploits
human factors.

- Why organisations implement
layered security measures.

- The importance of protecting data
and systems from attack.

- Identify and evaluate different
cyber threats in scenarios.

- Suggest appropriate measures to
reduce security risks.

Year Knowledge (Topics /Contexts)
What pupils will ‘know’.

Skills acquired
What pupils will be able to ‘do’.

Concepts developed
What pupils will ‘understand’.

Assessment (KPIs)

malware software, firewalls,
user access levels, passwords,
encryption, physical security.

Year 11
Term 1

Relational databases and structured
query language (SQL)

KPI7 Pupils understand Relational
databases and SQL

 Formative Assessment
- Regular low-stakes

quizzes on core concepts
and terminology

- Use of mini whiteboards
for spontaneous
questioning and peer
feedback

- Annotated responses to
short-answer questions
with teacher guidance

- Summative Assessment
- End-of-topic tests using

past paper-style
questions (multiple-
choice, application, and
extended responses)

Structured homework
- Year 11 Mock Exams
- Paper 1: Computational

Thinking and
Programming Skills (mock
under timed exam
conditions

- Paper 2 Computing
Concepts (paper, mock
under timed exam
conditions)

- - Key terms: database, table,
record, field, primary key,
foreign key, relationship (one-
to-one, one-to-many).

- Common data types used in
databases (e.g., integer, real,
Boolean, text, date/time).

- Data quality concepts:
validation (presence, length,
type/format, range), verification
(double entry, visual check).

- Core SQL keywords: SELECT,
FROM, WHERE, ORDER BY,
AND/OR/NOT, LIKE (with
wildcards), BETWEEN, IN.

- Simple aggregate functions:
COUNT, SUM, AVG, MIN, MAX.

- Purpose of JOINs to query
related data across tables (focus
on INNER JOIN).

- Why relational databases are used
to reduce duplication and maintain
data integrity.

- The role of primary and foreign
keys in enforcing relationships
between tables.

- The difference between validation
and verification and how they
improve data quality.

- How filtering, sorting, and
aggregation change the result set
returned by a query.

- How JOIN operations use key fields
to combine data from related
tables.

-

- Design simple table structures with
suitable fields, data types, and a
clear primary key.

- Sketch a simple entity–relationship
diagram (ERD) for a one-to-many
relationship.

- Write SQL queries to: select specific
fields, filter with WHERE using
comparison and logical operators,
and sort with ORDER BY.

- Use LIKE with wildcards, BETWEEN
and IN to refine queries.

- Apply aggregate functions (COUNT,
SUM, AVG, MIN, MAX) and, where
appropriate, GROUP BY to
summarise results.

- Write a basic two-table INNER JOIN
using a foreign key to retrieve
related records.

Term 2 Fundamentals of algorithms

KPI1 Pupils understand the
fundamentals of algorithms.

Year Knowledge (Topics /Contexts)
What pupils will ‘know’.

Skills acquired
What pupils will be able to ‘do’.

Concepts developed
What pupils will ‘understand’.

Assessment (KPIs)

 - the different search algorithms
- the different sorting algorithms

- Compare and contrast merge sort
and bubble sort algorithms.

- how binary and linear search
algorithms work:

- how bubble and merge sort
algorithms work.

- Data used to inform
intervention strategies
and track progress across
cohorts

Term 2 Impact of digital technology

KPI8 Pupils can discuss the ethical,
legal and environmental impacts of
digital technology on wider society,
including issues of privacy.

 - Legislation: Data Protection Act,
Computer Misuse Act,
Copyright, Designs and Patents
Act, Creative Commons
licensing, Freedom of
Information Act.

- Cultural and ethical issues
around digital technology use.

- Environmental impacts: energy
use, e-waste, sustainability

- How legislation governs the use of
digital data.

- The impact of technology on
culture, employment, and lifestyles.

- The consequences of digital
technology on the environment.

- Apply laws to real-world digital
scenarios.

- Discuss cultural, ethical, and
environmental impacts with
examples.

Computer Science GCE A Level
Year Knowledge (Topics /Contexts)

What pupils will ‘know’.
Skills acquired
What pupils will be able to ‘do’.

Concepts developed
What pupils will ‘understand’.

Assessment (KPIs)

Throughout
year 12

4.1 Fundamentals of programming

- Built-in data types (integer,

real/float, Boolean, character,
string, date/time).

- Programming constructs:
assignment, selection, iteration,
subroutines
(procedures/functions).

- Difference between local and
global variables, and scope.

- Concepts of exception handling
and recursion.

- Programming paradigms:
procedural and object-oriented
(encapsulation, inheritance).

- File I/O: reading/writing binary
files.

- Why different data types exist
(precision, memory, operations).

- How control structures combine to
form logic.

- Why local variables are used
(avoiding unintended interference).

- How exception handling increases
robustness; how recursion works.

- Trade-offs and design in different
programming paradigms.

- How file I/O differs from in-
memory operations.

-

- Declare and use variables with
appropriate data types.

- Write, adapt, and extend programs
using control structures.

- Use subroutines with parameters
and return values; manage scope.

- Implement exception handling and
recursive algorithms.

- Write code in procedural and
object-oriented styles.

- Perform file I/O operations in a
programming language.

Homework
Worksheets reinforcing
lesson content. Problem
solving challenges. Practice
examination style questions.
Formative Assessment

• Regular low-stakes
quizzes on core concepts
and terminology

• Use of mini whiteboards
for spontaneous
questioning and peer
feedback

• Annotated responses to
short-answer questions
with teacher guidance

• Self-assessed tasks using
scaffolding tools:
vocabulary banks,
exemplar answers, and
AO-marked frameworks

Summative Assessment
• End-of-topic tests using

past paper-style
questions (multiple-
choice, application, and
extended responses)

• Structured homework

Year 12 Mock Exams

Year 12
Term 1

4.5 Fundamentals of data
representation
- Binary, hexadecimal, decimal

systems and conversions.
- Signed number representation

(two’s complement).
- Character encoding (ASCII,

Unicode).
- Image representation (bitmap,

vector).
- Sound representation.

- Why binary is used in computing.
- Trade-offs between resolution,

colour depth, file size and quality.
- Why error detection/correction is

essential

- Convert between number bases
and perform binary arithmetic.

- Interpret signed binary numbers
using two’s complement.

- Calculate file sizes of images/sound
given parameters.

- Design simple error checking
methods.

Year Knowledge (Topics /Contexts)
What pupils will ‘know’.

Skills acquired
What pupils will be able to ‘do’.

Concepts developed
What pupils will ‘understand’.

Assessment (KPIs)

- Error detection methods (parity,
checksums).

• Paper 1: Online
Computational Thinking
and Programming Skills
(shortened paper, mock
under timed exam
conditions

• Paper 2 Computing
Concepts ((shortened
paper, mock under timed
exam conditions)

• Reflection tasks: pupils
complete “What Went
Well / Even Better If”
sheets and action plans
post-marking

• Data used to inform
intervention strategies
and track progress across
cohorts

Retrieval practice starters
throughout the course. End of
topic tests. Regular quizzes
using Smart Revise and Isaac
Computer Science.

 4.6 Fundamentals of computer
systems
- Types of software: system,

application, utility, libraries.
- Translators: compiler,

interpreter, assembler,
intermediate languages.

- Logic gates, Boolean algebra, De
Morgan’s laws.

- Operating system functions:
scheduling, memory, I/O, file
systems,

- How system software supports
applications and hardware
interaction.

- Advantages/disadvantages of
compilation vs interpretation.

- How Boolean logic underpins digital
circuits.

- Role of operating systems in
abstraction and resource
management.

- Identify software categories and
translator functions.

- Simplify Boolean expressions and
draw logic circuits.

- Explain OS scheduling and memory
management with examples.

-

Term 2 4.7 Fundamentals of computer
organisation and architecture
- CPU structure: registers (PC,

MAR, MDR, CIR, status), buses
(address, data, control).

- Stored-program concept.
- Instruction set operations (load,

store, arithmetic, logic,
branching).

- Addressing modes (immediate,
direct).

- External devices and their
characteristics.

- How CPU components interact in
the fetch-execute cycle.

- Trade-offs in instruction sets and
addressing modes.

- Differences between storage
devices (speed, capacity, volatility).

-

 4.9 Fundamentals of
communication and networking

- How transmission methods and
protocols affect performance.

- How networks scale and why
addressing/subnetting is important.

- Why layered protocols are used.

- Calculate subnet masks and plan IP
addressing.

- Trace packet transmission through
TCP/IP layers.

Year Knowledge (Topics /Contexts)
What pupils will ‘know’.

Skills acquired
What pupils will be able to ‘do’.

Concepts developed
What pupils will ‘understand’.

Assessment (KPIs)

- Transmission methods: serial,
parallel, synchronous,
asynchronous.

- Network concepts: bandwidth,
latency, packet switching,
topologies, IP addressing,
subnetting.

- Protocols: TCP/IP stack, HTTP,
SMTP, POP3, SSH.

- Network security threats and
mitigations.

- How security vulnerabilities arise
and are managed.

- Propose mitigation strategies for
network security threats

 4.4 Theory of computation
- Concepts of abstraction,

automation,
procedural/functional/data
abstraction.

- Finite state machines, regular
expressions, classification of
algorithmic problems.

- Turing machine model.

- How abstraction and automation
enable building of complex
systems.

- Relationships between
computational models,
expressiveness, decidability.

- Draw state diagrams and transition
tables.

- Simulate simple Turing machines.
- Reason about solvable vs

unsolvable problems.

Term 3 4.2 Fundamentals of Data
Structures
- Definitions of arrays, records,

queues, stacks, trees, graphs,
hash tables, dictionaries.

- Abstract Data Types (ADTs) and
separation of interface vs
implementation.

- Operations: push/pop (stack),
enqueue/dequeue (queue),
traversal (trees/graphs).

- Why certain data structures suit
particular tasks (trade-offs in
operations, memory, speed).

- Principle of abstraction (hiding
implementation details).

- Algorithmic costs (time complexity)
of operations.

- Use and manipulate data structures
in programs.

- Design and use ADTs and choose
appropriate implementations.

- Implement and trace standard
operations (add, remove, search).

Year Knowledge (Topics /Contexts)
What pupils will ‘know’.

Skills acquired
What pupils will be able to ‘do’.

Concepts developed
What pupils will ‘understand’.

Assessment (KPIs)

 4.3 Fundamentals of algorithms
- Common algorithms: linear

search, binary search, merge
sort, Dijkstra’s algorithm.

- Big-O notation for complexity
analysis.

- Concepts of divide-and-
conquer, optimisation,
heuristics.

- How algorithm efficiency is
measured.

- Why some problems are intractable
or require heuristic approaches.

- How to evaluate algorithm
correctness and robustness.

-

- Trace and analyse algorithms step-
by-step.

- Choose and adapt algorithms for
problems.

- Test and justify correctness of
algorithms.

-

 4.11 Big Data
- Definition and features of Big

Data (volume, velocity, variety).
- Issues: data cleaning, real-time

processing, ethical/privacy
concerns.

- Why traditional databases struggle
with Big Data.

- Challenges of ensuring quality,
security, and privacy in Big Data.

- Evaluate Big Data projects and
architectures.

- Propose alternative approaches
(e.g. distributed processing,
NoSQL).

Year 13 4.10 Fundamentals of databases
- Tables, records, fields, keys

(primary, foreign).
- Relationships, queries, and

normalization (1NF, 2NF, 3NF).

- Why databases use relational
models.

- How normalization reduces
redundancy and improves integrity.

- Design normalized relational
schemas.

- Write SQL queries to retrieve and
manipulate data.

 4.12 Fundamentals of functional
programming

- Functional programming
concepts: immutability,
recursion, higher-order
functions, first-class functions

- Differences between functional and
imperative programming
paradigms.

- Advantages and limitations of
functional approaches.

- Write functional-style code using
recursion and higher-order
functions.

- Translate small problems into
functional solutions

- 4.8 Consequences of uses of
computing
- Ethical, legal, cultural, and social

issues in computing.

- Impacts of computing on
individuals, organisations, and
society.

- How laws regulate and shape
ethical computing practices

- Analyse scenarios to identify
ethical/legal consequences.

- Apply legal and ethical frameworks
to real-world cases

Year Knowledge (Topics /Contexts)
What pupils will ‘know’.

Skills acquired
What pupils will be able to ‘do’.

Concepts developed
What pupils will ‘understand’.

Assessment (KPIs)

- Relevant laws: data protection,
copyright, cybersecurity

Year 13
Term 1

4.14 NEA – Non-Examined
Assessment – The project allows
students to develop their practical
skills in the context of solving a
realistic problem or carrying out an
investigation.
 The project is intended to be as
much a learning experience as a
method of assessment; students
have the opportunity to work
independently on a problem of
interest over an extended period,
during which they can extend their
programming skills and deepen their
understanding of computer science
- Stages of software

development: analysis, design,
implementation, testing,
evaluation.

- Techniques: decomposition,
abstraction, prototyping,
algorithm design.

- Why systematic approaches
improve reliability and
maintainability.

- How decomposition and
abstraction reduce complexity.

- The most important skill that is
assessed is a student's ability to
create a programmed solution to a
problem or investigation. This is
recognised by allocating 42 of the
75 available marks to the technical
solution and a lower proportion of
marks for supporting
documentation to reflect the
expectation that reporting of the
problem, its analysis, the design of
a solution or plan of an
investigation and testing and
evaluation will be concise

- Produce design artefacts
(flowcharts, pseudocode, test
plans).

- Carry out each stage of project
development in the NEA.

- Evaluate software solutions
effectively.

Formative feedback at
specific points during the
project.
Retrieval practice starters
throughout the course.

Practice examination
questions.
Regular quizzes

Term 2 Paper 1 – Skeleton Code
Pupils are provided with a program
written by AQA the exam board.
The program is available from
September 1st.
Time will be taken to understand the
function of the program and the
mechanics of the program, with a
target of being familiar enough to be
able to explain the program

Year Knowledge (Topics /Contexts)
What pupils will ‘know’.

Skills acquired
What pupils will be able to ‘do’.

Concepts developed
What pupils will ‘understand’.

Assessment (KPIs)

constructs as well as amend and add
to the program online under
examination conditions.

Term 3 Revision and Reinforcement -

