THE

SWEVNEPARK CURRICULUM INTENT: Computer Science

SCHOOL

Computer Science GCSE

In GCSE Computer Science, pupils explore how computer systems function, from the physical hardware to the software applications and programs that users
interact with. They learn how to design, build, and adapt computer systems, applying these skills creatively to solve real-world problems. The course
encourages pupils to make computers work for them, moving beyond basic functions to develop their own solutions. A strong emphasis is placed on
understanding the risks associated with storing personal information electronically, alongside strategies for maintaining security and reducing the impact of
online threats. The subject equips pupils with transferable skills, including logical thinking, problem-solving, and data handling, which are valuable across
other subjects and future career paths. ICT skills are essential in modern workplaces, and the ability to write programs and manipulate data are highly
regarded by employers.

Computer Science A Level

At A Level, Computer Science builds on this foundation by deepening students’ understanding of how computers operate and developing advanced
computational and problem-solving skills. Students gain practical experience through their NEA, where they design and implement bespoke software
solutions. This includes working with Object-Oriented Programming, Event-Driven Programming, and Graphical User Interfaces. Such projects prepare
students for further study at degree level or for direct entry into apprenticeships and careers in software development. The course also explores the
fundamental building blocks of computing, giving students a broad and thorough understanding of the subject and opening the door to a wide range of future
opportunities.

THE

SWEVNEPARK CURRICULUM MAP: Computer Science

SCHOOL

Computer Science GCSE

year 10
and 11

concepts

- Basic programming constructs:
sequence, selection, iteration.

- Data types: integer, real,
Boolean, character, string.

- How to use variables and
constants.

- Concepts of functions,
procedures, and scope.

- String manipulation techniques.

- Input/output

- Structured programming
principle

- differences between low and
high levels of programming
language:

- that all programming code must
be translated into machine code
before it is executed

- the differences between and
use of three types of translator:
interpreter, compiler and
assembler

Writing programs using Python that:

The importance of code readability,

maintainability, and testing.
How scope affects variables.
The advantages of structured

programming and modular design.

Use NOT, AND and OR when
creating Boolean expressions

Use in-built functions

Use random number generation
Write algorithms in pseudocode
involving sequence, selection and
iteration

Use one- and two-dimensional
arrays in the design of solutions to
simple problems

Define the terms field, record and
file

write simple procedures and
functions

use parameters to pass data to
procedures and functions

- Write programs using sequence,
selection, iteration, and
subroutines.

- Manipulate strings

- Test, debug, and refine programs
systematically.

- the importance of validating input

- how to determine the correct
output of an algorithm for a given
set of data

- how to identify and correct errors
in algorithms

Year Knowledge (Topics /Contexts) Skills acquired Concepts developed Assessment (KPIs)
What pupils will ‘know’. What pupils will be able to ‘do’. What pupils will ‘understand’.
Throughout | Programming and programming Formative Assessment

- Regular low-stakes
quizzes on core concepts
and terminology

- Use of mini whiteboards
for spontaneous
guestioning and peer
feedback

- Annotated responses to
short-answer questions
with teacher guidance

- Self-assessed tasks using
scaffolding tools:
vocabulary banks,
exemplar answers, and
AO-marked frameworks

Summative Assessment

- End-of-topic tests using
past paper-style
questions (multiple-
choice, application, and
extended responses)

- Structured homework

Year Knowledge (Topics /Contexts) Skills acquired Concepts developed Assessment (KPIs)
What pupils will ‘know’. What pupils will be able to ‘do’. What pupils will ‘understand’.
- List validation checks that can be - Formal assessment
used on input data folders with marked and
- write simple data validation levelled work linked to
routines feedback loops
- write a simple authentication
routine involving a username and Year 10 Mock Exams
password - Paper 1: Computational
- Write a test plan to test an Thinking and
algorithm Programming Skills
- Use atrace table to trace through a (shortened paper, mock
program under timed exam
Year 10 Data Representation conditions
KPI3 Pupils understand the - Paper 2 Computing
fundamentals of data Concepts ((shortened
representation. paper, mock under timed
exam conditions)
Term 1 - Number bases: binary, decimal, | - Why binary is used in computers. Convert numbers between bases.

hexadecimal.

- Conversions between binary,
decimal, and hexadecimal.

- Binary arithmetic (addition,
subtraction, shifts).

- Character encoding systems:
ASCII, Unicode.

- Image representation (pixels,
resolution, colour depth).

- Sound representation
(sampling, sample rate, bit
depth).

- Units of data: bit, nibble, byte,
kilobyte, etc.

- The impact of resolution and colour
depth on image size and quality.

- The trade-offs between lossless
and lossy compression.

Perform binary arithmetic
operations.

Calculate file sizes for images and
sound files.

Choose appropriate compression
methods for scenarios.

Reflection tasks: pupils
complete “What Went
Well / Even Better If”
sheets and action plans
post-marking

Data used to inform
intervention strategies
and track progress across
cohorts

Year Knowledge (Topics /Contexts) Skills acquired Concepts developed Assessment (KPIs)

What pupils will ‘know’. What pupils will be able to ‘do’. What pupils will ‘understand’.

- Compression techniques:
lossless and lossy.

Term 2 Fundamentals of algorithms

KPI1 Pupils understand the

fundamentals of algorithms.

- The terms algorithm, Why decomposition and - Apply decomposition and
decomposition, and abstraction. abstraction are used to solve abstraction to solve problems.

- Standard search algorithms: problems. - Trace through search and sort
linear search, binary search. The efficiency of algorithms and the algorithms with given data.

- Standard sorting algorithms: concept of computational thinking. | - Write, interpret, and refine
bubble sort, merge sort, How different algorithms solve the algorithms using pseudocode or
insertion sort. same problem in different ways. flowcharts.

- Representing algorithms using
pseudocode and flowcharts.

Term 2 Computer Systems, Systems

architecture

- The CPU: control unit, ALU,
registers, cache.

- The fetch-decode-execute cycle.

- Factors affecting CPU
performance: clock speed,
cores, cache size.

- Embedded systems and their
uses.

- Primary storage (RAM, ROM),
secondary storage (magnetic,
optical, solid state).

- Tertiary storage uses.

How hardware and software
interact.

Why embedded systems are
designed for specific tasks.

How performance factors impact
overall processing speed.

Why RAM and ROM are both
required.

Trade-offs between different types
of secondary storage.

- Describe the function of CPU
components.

- Explain the stages of the fetch-
decode-execute cycle.

- Evaluate the suitability of
embedded systems in given
contexts

e Compare different storage

technologies for a given scenario.

e Select appropriate storage media
based on requirements.

Year Knowledge (Topics /Contexts) Skills acquired Concepts developed Assessment (KPIs)
What pupils will ‘know’. What pupils will be able to ‘do’. What pupils will ‘understand’.
- Characteristics: capacity, speed, | ¢ How storage characteristics affect
portability, durability, reliability, suitability.
cost
Term 3 Computer Networks
KPI5 Pupils are able to describe the
fundamentals of computer networks
- - Types of networks: LAN, WAN. - How different network types are Compare and contrast client-server
- Factors affecting network structured and used. and peer-to-peer models.
performance. - Why factors like bandwidth and Explain how DNS works to resolve
- Theroles of hardware: routers, latency affect performance. domain names.
switches, WAPs, NICs, - The advantages and disadvantages Evaluate scenarios for using LANSs,
transmission media. of cloud computing. WANSs, and virtual networks.
- Client-server vs peer-to-peer
models.
- The Internet, DNS, hosting, the
cloud.
- Virtual networks and their use.
Term 3 Cyber Security

KPI16 Pupils are able to describe the

fundamentals of cyber security.

- Types of cyber threats:
malware, phishing, brute force,
denial of service, data
interception, SQL injection.

- Forms of social engineering:
blagging, phishing, pharming,
shoulder surfing.

- Methods to identify and
prevent vulnerabilities:
penetration testing, anti-

How social engineering exploits
human factors.

Why organisations implement
layered security measures.

The importance of protecting data
and systems from attack.

Identify and evaluate different
cyber threats in scenarios.
Suggest appropriate measures to
reduce security risks.

Year Knowledge (Topics /Contexts) Skills acquired Concepts developed Assessment (KPIs)
What pupils will ‘know’. What pupils will be able to ‘do’. What pupils will ‘understand’.
malware software, firewalls,
user access levels, passwords,
encryption, physical security.
Year 11 Relational databases and structured Formative Assessment
Term1 query language (SQL) - Regular low-stakes
KPI17 Pupils understand Relational quizzes on core concepts
databases and SQL and terminology
- - Key terms: database, table, _ Why relational databases are used | - Design simple table structures with | = Use of mini whiteboards
record, field, primary key, to reduce duplication and maintain suitable fields, data types, and a for spontaneous
foreign key, relationship (one- data integrity. clear primary key. questioning and peer
to-one, one-to-many). - The role of primary and foreign - Sketch a simple entity—relationship feedback
- Common data types used in keys in enforcing relationships diagram (ERD) for a one-to-many - Annotated responses to
databases (e.g., integer, real, between tables. relationship. short-answer questions
Boolean, text, date/time). - The difference between validation |- Write SQL queries to: select specific with teacher guidance
- Data quality concepts: and verification and how they fields, filter with WHERE using - Summative Assessment
validation (presence, length, improve data quality. comparison and logical operators, |~ End-of-topic tests using
type/format, range), verification | - How filtering, sorting, and and sort with ORDER BY. past paper-style
(double entry, visual check). aggregation change the result set | - Use LIKE with wildcards, BETWEEN questions (multiple-
- Core SQL keywords: SELECT, returned by a query. and IN to refine queries. choice, application, and
FROM, WHERE, ORDER BY, - How JOIN operations use key fields | - Apply aggregate functions (COUNT, extended responses)
AND/OR/NOT, LIKE (with to combine data from related SUM, AVG, MIN, MAX) and, where | Structured homework
wildcards), BETWEEN, IN. tables. appropriate, GROUP BY to - Year 11 Mock Exams
- Simple aggregate functions: summarise results. - Paper 1: Computational
COUNT, SUM, AVG, MIN, MAX. |~ - Write a basic two-table INNER JOIN Thinking and
- Purpose of JOINs to query using a foreign key to retrieve Programming Skills (mock
related data across tables (focus related records. under timed exam
on INNER JOIN). conditions
Term 2 - Paper 2 Computing

Fundamentals of algorithms

KPI1 Pupils understand the
fundamentals of algorithms.

Concepts (paper, mock
under timed exam
conditions)

Year Knowledge (Topics /Contexts) Skills acquired Concepts developed Assessment (KPIs)

What pupils will ‘know’. What pupils will be able to ‘do’. What pupils will ‘understand’.

- the different search algorithms - Compare and contrast merge sort - how binary and linear search - Data used to inform

- the different sorting algorithms and bubble sort algorithms. algorithms work: intervention strategies

- how bubble and merge sort and track progress across
algorithms work.
cohorts

Term 2

Impact of digital technology

KPI8 Pupils can discuss the ethical,
legal and environmental impacts of
digital technology on wider society,
including issues of privacy.

- Legislation: Data Protection Act,
Computer Misuse Act,
Copyright, Designs and Patents
Act, Creative Commons
licensing, Freedom of
Information Act.

- Cultural and ethical issues
around digital technology use.

- Environmental impacts: energy
use, e-waste, sustainability

- How legislation governs the use of
digital data.
- The impact of technology on

culture, employment, and lifestyles.

- The consequences of digital
technology on the environment.

- Apply laws to real-world digital
scenarios.

- Discuss cultural, ethical, and
environmental impacts with
examples.

Computer Science GCE A Level

- Binary, hexadecimal, decimal
systems and conversions.

- Signed number representation
(two’s complement).

- Character encoding (ASCII,
Unicode).

- Image representation (bitmap,
vector).

- Sound representation.

colour depth, file size and quality.
- Why error detection/correction is
essential

- Interpret signed binary numbers
using two’s complement.

- Calculate file sizes of images/sound
given parameters.

- Design simple error checking
methods.

Year Knowledge (Topics /Contexts) Skills acquired Concepts developed Assessment (KPIs)
What pupils will ‘know’. What pupils will be able to ‘do’. What pupils will ‘understand’.
Throughout 4.1 Fundamentals of programming - Why different data types exist - Declare and use variables with Homework
year 12 - . (precision, memory, operatlo.ns). apr?roprlate data types. Worksheets reinforcing
- Built-in data types (integer, - How control structures combineto | - Write, adapt, and extend programs | |asson content. Problem
real/float, Boolean, character, form logic. using control structures. solving challenges. Practice
string, date/time). - Why local variables are used - Use subroutines with parameters examination style questions.
- Programming constructs: (avoiding unintended interference). and return values; manage scope. Formative Assessment
assignment, selection, iteration, | - How exception handling increases - Implement exception handlingand | Regular low-stakes
subroutines robustness; how recursion works. recursive algorithms. quizzes on core concepts
(procedures/functions). - Trade-offs and design in different - Write code in procedural and and terminology
- Difference between local and programming paradigms. object-oriented styles. e Use of mini whiteboards
global variables, and scope. - How file I/O differs from in- - Perform file I/O operations in a for spontaneous
- Concepts of exception handling memory operations. programming language. questioning and peer
and recursion. feedback
- Programming paradigms:) e Annotated responses to
procedural and object-oriented short-answer questions
L . with teacher guidance
(encapsulation, inheritance).
- File 1/0: reading/writing binary * Self-assessed tasks using
) scaffolding tools:
files.
. . _ . vocabulary banks,
Year 12 4.5 Fundamfentals of data - Why binary is used in computing. - Convert between number bases exemplar answers, and
Term1 representation - Trade-offs between resolution, and perform binary arithmetic.

AO-marked frameworks

Summative Assessment

End-of-topic tests using
past paper-style
questions (multiple-
choice, application, and
extended responses)

Structured homework

Year 12 Mock Exams

Year Knowledge (Topics /Contexts) Skills acquired Concepts developed Assessment (KPIs)
What pupils will ‘know’. What pupils will be able to ‘do’. What pupils will ‘understand’.
- Error detection methods (parity, e Paper 1: Online
checksums). Computational Thinking
4.6 Fundamentals of computer How system software supports Identify software categories and and Programming Skills
systems licati d hardwar translator functions. (shortened paper, mock
applications and hardware anslator functions under timed exam
- Types of software: system, interaction. Simplify Boolean expressions and conditions
application, utility, libraries. Advantages/disadvantages of draw logic circuits. .
- Translators: compiler, compilation vs interpretation. Explain OS scheduling and memory ® Paper2 Computing
interpreter, assembler ; ; - ; Concepts ([shortened
_ " ’ How Boolean logic underpins digital management with examples. paper, mock under timed
intermediate languages. circuits. exam conditions)
- Logic ga:ces, Boolean algebra, De Role of operating systems in « Reflection tasks: pupils
Morgan’s laws. abstraction and resource complete “What Went
- Operating system functions: management. Well / Even Better If”
scheduling, memory, I/0, file sheets and action plans
systems, post-marking
Term 2 4.7 Fundamentals of computer How CPU components interact in e Data used to inform

organisation and architecture
- CPU structure: registers (PC,

MAR, MDR, CIR, status), buses
(address, data, control).

- Stored-program concept.

- Instruction set operations (load,
store, arithmetic, logic,
branching).

- Addressing modes (immediate,
direct).

- External devices and their
characteristics.

the fetch-execute cycle.

Trade-offs in instruction sets and
addressing modes.

Differences between storage
devices (speed, capacity, volatility).

4.9 Fundamentals of
communication and networking

How transmission methods and
protocols affect performance.

How networks scale and why
addressing/subnetting is important.
Why layered protocols are used.

Calculate subnet masks and plan IP
addressing.

Trace packet transmission through
TCP/IP layers.

intervention strategies
and track progress across
cohorts

Retrieval practice starters
throughout the course. End of
topic tests. Regular quizzes
using Smart Revise and Isaac
Computer Science.

Year Knowledge (Topics /Contexts) Skills acquired Concepts developed Assessment (KPIs)

What pupils will ‘know’. What pupils will be able to ‘do’. What pupils will ‘understand’.

- Transmission methods: serial, - How security vulnerabilities arise - Propose mitigation strategies for
parallel, synchronous, and are managed. network security threats
asynchronous.

- Network concepts: bandwidth,
latency, packet switching,
topologies, IP addressing,
subnetting.

- Protocols: TCP/IP stack, HTTP,

SMTP, POP3, SSH.

- Network security threats and
mitigations.

4.4 Theory of computation - How abstraction and automation - Draw state diagrams and transition

- Concepts of abstraction, enable building of complex tables.
automation, systems. - Simulate simple Turing machines.
procedural/functional/data - Relationships between - Reason about solvable vs
abstraction. computational models, unsolvable problems.

- Finite state machines, regular expressiveness, decidability.
expressions, classification of
algorithmic problem:s.

- Turing machine model.

Term 3 4.2 Fundamentals of Data - Why certain data structures suit - Use and manipulate data structures

Structures
- Definitions of arrays, records,

gueues, stacks, trees, graphs,
hash tables, dictionaries.

- Abstract Data Types (ADTs) and
separation of interface vs
implementation.

- Operations: push/pop (stack),
enqueue/dequeue (queue),
traversal (trees/graphs).

particular tasks (trade-offs in
operations, memory, speed).

- Principle of abstraction (hiding
implementation details).

- Algorithmic costs (time complexity)
of operations.

in programs.

- Design and use ADTs and choose
appropriate implementations.

- Implement and trace standard
operations (add, remove, search).

Year Knowledge (Topics /Contexts) Skills acquired Concepts developed Assessment (KPIs)
What pupils will ‘know’. What pupils will be able to ‘do’. What pupils will ‘understand’.
4.3 Fundamentals of algorithms - How algorithm efficiency is - Trace and analyse algorithms step-
- Common algorithms: linear measured. by-step.
search, binary search, merge - Why some problems are intractable | - Choose and adapt algorithms for
sort, Dijkstra’s algorithm. or require heuristic approaches. problems.
- Big-O notation for complexity - How to evaluate algorithm - Test and justify correctness of
analysis. correctness and robustness. algorithms.
- Concepts of divide-and-
conquer, optimisation, B -
heuristics.
4.11 Big Data - Why traditional databases struggle | - Evaluate Big Data projects and
- Definition and features of Big with Big Data. architectures.
Data (volume, velocity, variety). | - Challenges of ensuring quality, - Propose alternative approaches
- lssues: data cleaning, real-time security, and privacy in Big Data. (e.g. distributed processing,
processing, ethical/privacy NoSQL).
concerns.
Year 13 4.10 Fundamentals of databases - Why databases use relational - Design normalized relational

- Tables, records, fields, keys
(primary, foreign).

- Relationships, queries, and
normalization (INF, 2NF, 3NF).

models.
- How normalization reduces
redundancy and improves integrity.

schemas.
- Write SQL queries to retrieve and
manipulate data.

4.12 Fundamentals of functional

programming

- Functional programming
concepts: immutability,
recursion, higher-order
functions, first-class functions

- Differences between functional and
imperative programming
paradigms.

- Advantages and limitations of
functional approaches.

- Write functional-style code using
recursion and higher-order
functions.

- Translate small problems into
functional solutions

4.8 Consequences of uses of
computing

- Ethical, legal, cultural, and social

issues in computing.

- Impacts of computing on
individuals, organisations, and
society.

- How laws regulate and shape
ethical computing practices

- Analyse scenarios to identify
ethical/legal consequences.

- Apply legal and ethical frameworks
to real-world cases

Year Knowledge (Topics /Contexts) Skills acquired Concepts developed Assessment (KPIs)
What pupils will ‘know’. What pupils will be able to ‘do’. What pupils will ‘understand’.
- Relevant laws: data protection,
copyright, cybersecurity
Year 13 4.14 NEA — Non-Examined - Why systematic approaches - Produce design artefacts Formative feedback at
Term 1 Assessment — The project allows improve reliability and (flowcharts, pseudocode, test specific points during the
students to develop their practical maintainability. plans). project.
skills in the context of solving a . : Retrieval practice starters
T . - How decomposition and - Carry out each stage of project
realistic problem or carrying out an b] q lexi devel in the NEA throughout the course.
investigation. abstraction reduce complexity. evelopment in the .
The project is intended to be as . . . - Evaluate software solutions Practice examination
. . - The most important skill that is . .
much a learning experience as a . o effectively. questions.
assessed is a student's ability to .
method of assessment; students . Regular quizzes
. create a programmed solution to a
have the opportunity to work . . L
. problem or investigation. This is
independently on a problem of . .
. . recognised by allocating 42 of the
interest over an extended period, . .
. . . 75 available marks to the technical
during which they can extend their . .
. . . solution and a lower proportion of
programming skills and deepen their :
. . marks for supporting
understanding of computer science .
documentation to reflect the
- Stages of software . .
)) expectation that reporting of the
development: analysis, design, problem, its analysis, the design of
|mp|ementat|0n, te5t|ng, a solution or plan Of an
evaluation. investigation and testing and
- Techniques: decomposition, evaluation will be concise
abstraction, prototyping,
algorithm design.
Term 2 Paper 1 - Skeleton Code

Pupils are provided with a program
written by AQA the exam board.

The program is available from
September 1%,

Time will be taken to understand the
function of the program and the
mechanics of the program, with a
target of being familiar enough to be
able to explain the program

Year

Knowledge (Topics /Contexts)
What pupils will ‘know’.

Skills acquired
What pupils will be able to ‘do’.

Concepts developed
What pupils will ‘understand’.

Assessment (KPIs)

constructs as well as amend and add
to the program online under
examination conditions.

Term 3

Revision and Reinforcement

